Topology-Aware Embeddings Reduce Spatial
Hallucinations in Financial Large Language Models

Nataliya Tkachenko
Lloyds Banking Group
nataliya.tkachenko@lloydsbanking.com

Abstract

Large language models (LLMs) increasingly support financial decision-making
tasks, including environmental, social, and governance (ESG) compliance screen-
ing, sanctions monitoring, or fraud detection. However, these models often hal-
lucinate when responding to questions involving geospatial predicates, such as
whether a facility is inside a protected area, whether it is adjacent to the sanc-
tioned entity or has other type of spatial dependency, which could be important
for a financial institution to be aware of. Here we propose fopology-aware pol-
icy embeddings, geometry-grounded vector representations derived from author-
itative geospatial regulatory datasets. These embeddings encode legally relevant
spatial relationships between assets and policy-defined areas, including contain-
ment, overlap, adjacency, proximity, and coverage ratios. Across all evaluated
topology types, the hybrid LLM+embedding approach achieved absolute accu-
racy improvements of 38—70% over LLM-only baselines, with relative hallucina-
tion reductions ranging from 67% to 73%. Notably, containment tasks, critical for
regulatory compliance with boundaries analytics, saw the largest absolute gains
(38%) and highest relative reduction in confident misclassification (73%), while
proximity tasks (vital for supply chain and ESG risk screening) benefited from
a 22% improvement and a 67% reduction in spatial misjudgements. These find-
ings demonstrate that topology-aware embeddings not only enhance predictive
performance but also significantly mitigate spatial hallucinations that have been
observed in prior LLM deployments in financial compliance and ESG contexts.

1 Introduction

The integration of geospatial intelligence into financial decision-making has gained momentum in
recent years due to the proliferation of environmental, social, and governance (ESG) regulations
such as the Taskforce on Nature-related Financial Disclosures (TNFD) [1]], Task Force on Climate-
related Financial Disclosures (TCFD) [2], and European Union Habitats Directive [3]. For banks,
asset managers, and institutional investors, spatial reasoning is critical for assessing compliance
with zoning laws, biodiversity protections, deforestation moratoria, and water resource management
frameworks. Yet despite advances in Al, Large Language Models (LLMs) have limited capacity to
perform accurate spatial reasoning [4} 5] 16].

Recent studies demonstrate that LLMs hallucinate spatial facts at high rates when answering
location-based compliance queries [7, I8]. For instance, an LLM may assert that an oil pipeline
does not intersect a Natura 2000 site when, in fact, geospatial analysis reveals a clear intersec-
tion [9]]. Such errors can have severe financial consequences, from regulatory fines to reputational
damage, as seen in the large banks Amazon financing controversy [10] and palm oil supply chain
non-compliance cases in Indonesia [11]].
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This paper proposes a systematic approach to mitigating such errors through ropology-aware pol-
icy embeddings trained on labeled geospatial relations between assets and regulatory zones. These
embeddings provide a compact, learnable representation of spatial relationships, which can be inte-
grated with LLM reasoning pipelines to produce legally and geographically accurate responses.

2 Spatial hallucinations in LLMs

Spatial hallucinations refer to instances where a model generates incorrect statements about the
spatial relationships between entities, often due to lack of grounding in geospatial computation [4}
S]. Benchmarks such as MAPEval [6] and MapIQ [[/] reveal that state-of-the-art LLMs, including
GPT-4 and Claude 3, achieve less than 35% accuracy on containment and proximity reasoning tasks
without external tools.

In the finance domain, ESMA [12] and BIS [13] have noted that LLM adoption in compliance and
ESG analysis is hindered by the inability to natively process spatial data. Studies on domain-specific
LLMs, such as BloombergGPT [14], show improved ESG term recognition but no inherent gain in
geometric reasoning.

Research in grounded spatial reasoning [8} [15] suggests augmenting LLMs with geospatial compu-
tation modules or embeddings derived from GIS operations. In finance literature, potential applica-
tions for such semantic augmentation include:

* ESG compliance screening: e.g., Determining if a mining concession overlaps a protected
area [9].

* Fraud detection: Detecting anomalous proximity between unrelated industrial assets [16].

 Sanctions screening: Identifying sanctioned entities operating within prohibited maritime
zones [17].

These findings motivate the development of embeddings that encode topological relationships di-
rectly from geospatial data, enabling LLMs to use them as grounded facts.

3 Regulatory and policy context

Key regulatory frameworks define spatial criteria for compliance, for instance, the EU Habitats Di-
rective [3] and Birds Directive establish strict containment and adjacency rules for certain industrial
activities. The TNFD [1] LEAP framework emphasizes proportional impact assessments, relevant
to partial coverage ratios. The IFC Performance Standard 6 [19] mandates biodiversity offsets when
operations touch or overlap sensitive habitats.

Beyond the EU, Brazil’s Forest Code [20] enforces land use restrictions based on adjacency to water
bodies, while Indonesia’s moratorium on primary forest conversion [21] requires strict containment
checks. Global voluntary frameworks, such as UNEP FI’s Principles for Responsible Banking [22],
encourage financial institutions to integrate geospatial ESG screening into lending policies.

4 Topological semantics and regulatory abstractions

Motivated by the spatial clauses embedded in regulatory frameworks (e.g., EU Habitats/Birds Di-
rectives, IFC PS6, TNFD LEAP), we formalize five semantic relations between an asset geometry
A (point, line, or polygon) and a policy zone Z (polygon) that serve as abstractions for topology-
aware embeddings (Table [I). Throughout, all computations are performed in a projected metric
CRS. Let 9 A denote the boundary of A, area(-) and len(+) the area/length functionals, and dist(-, -)
the minimum Euclidean distance.

1. Containment. Definition: A is contained in Z if A C Z, with indicator ¢ = J¥{A C
Z}. Interpretation: In many regimes (e.g., strictly protected Natura 2000 subtypes), full
containment may trigger bright-line exclusion. Examples:

* Point — polygon: A cement plant geocoded at (z, y) lies inside a Special Area of Con-
servation; ¢ = 1 and—where zero-tolerance rules apply—the site is non-compliant
irrespective of size.



* Line — polygon: A 7.3km pipeline segment is entirely routed within a protected
corridor (e.g., a landscape reserve); ¢ = 1 for that segment, which typically requires a
derogation or reroute.

* Polygon — polygon: A 45ha mine lease falls wholly within a Key Biodiversity Area
polygon; ¢ = 1 and screening proceeds under strict biodiversity provisions.

2. Overlap (intersection). Definition: A overlaps Z if (AN Z) # & and neither is contained
in the other. Indicator o = W{ANZ # @}. Interpretation: Any nonzero intersection often
triggers enhanced due diligence; the magnitude is handled via coverage below. Examples:

* Line — polygon: A pipeline crosses a Natura 2000 polygon for 620m; o = 1 and
mitigation (e.g., HDD drilling, seasonal windows) may be mandated.

* Polygon — polygon: A 120ha mine footprint intersects a protected area along one
edge; o = 1 even if only a small sliver is involved.

3. Partial coverage ratio. Definition: The coverage of Aby Z is

area(AN Z) if A is a polygon,
area(A)
r=qlndn?) if A is a line,
len(A)
n/a if A is a point.

Interpretation: r € [0, 1] quantifies the degree of interaction; many policies use materiality
thresholds » > « (e.g., « = 0.05) to escalate review. Examples:

* Line coverage: Of a 10km pipeline, 1.1 km lie within a protected corridor; » = 0.11
and exceeds a hypothetical a = 0.05, prompting redesign.

* Polygon coverage: A 200ha mine has 18 ha overlapping a protected polygon; r =
18/200 = 0.09, frequently triggering proportionate habitat offsets.

4. Adjacency (touch). Definition: A touches Z if 0ANOZ # @ while int(A) Nint(Z) = &.
Indicator t = ¥{JANIZ # @}. In practice, numerical tolerances or legal buffers B (e.g.,
50-500 m) are used to operationalize adjacency. Interpretation: Touching or near-touching
can violate buffer requirements (e.g., setbacks from riparian zones) even without positive
overlap. Examples:

* Point adjacency: A plant entrance coordinate lies within 5 m of the protected bound-
ary; with a 10 m mapping tolerance, we set ¢ = 1 (adjacent).

* Line adjacency: A pipeline easement abuts a protected polygon boundary along
140 m; ¢ = 1 and construction methods may be restricted.

* Polygon adjacency: A mine lease boundary is coterminous with the protected area
boundary along one edge; ¢ = 1 and edge effects must be assessed.

5. Proximity (minimum distance). Definition: The proximity of Ato Z is d = dist(4, Z) >
0 (meters). A signed distance ds can be defined by d; = —dist(A4,07) if A C Z and
ds = dist(A, 0Z) otherwise, so that inside points have ds < 0. Interpretation: Many
frameworks impose buffer-based triggers (e.g., projects within d < B meters of high water-
stress basins or sensitive habitats require enhanced review). Examples:

* Point proximity: A steel plant centroid is 180 m from a Natura 2000 boundary; with
B = 200 m, it is within the review buffer (d < B).

* Line proximity: The nearest point on a pipeline to the policy polygon is 920 m away;
if B = 1,000 m, the segment narrowly avoids buffer-triggered conditions.

* Polygon proximity: A mine footprint lies outside Z with d = 35 m; despite o = 0,
proximity may still mandate monitoring under water or biodiversity guidance.

These five relations induce complementary supervision signals for training embeddings: {c,o,t}
provide binary labels; r and d supply continuous targets. Together they capture bright-line prohi-
bitions (e.g., containment), proportional materiality (coverage), edge cases (adjacency with toler-
ance), and near-miss risks (proximity), aligning the representation space with the decision logic of
geo-financial compliance.



Table 1: Topological risk mapping to policies

Topology Type Example ESG Risk Regulatory Reference
Containment Deforestation exposure EU Habitats Directive [3]]
Overlap Water stress BIS Aqueduct modeling [[18]
Partial Coverage Biodiversity loss TNFD LEAP [1]

Adjacency Pollution buffer violations IFC PS6 [19]

Proximity Supply chain risk NGEFS systemic risk [23]]

S Methodology

All geospatial operations and embeddings training are performed in Python. Input asset datasets
include points (industrial facilities), lines (pipelines), and polygons (mines), while policy datasets
include Natura 2000 [24], WDPA protected areas [9]], and Aqueduct water stress zones [25]].

For each asset—policy pair, we compute binary labels for containment, overlap, and adjacency; con-
tinuous labels for coverage ratio and proximity. These labels are used to train topology-specific
embedding models, with shared encoders and task-specific output heads.

6 Evaluation setup

The evaluation protocol was designed to rigorously assess the utility of topology-aware geo-
embeddings in mitigating spatial reasoning errors and hallucinations in large language models
(LLMs) for geo-financial decision support. In line with best practices for Al benchmarking in reg-
ulated sectors [35, [38]], our setup comprises (i) a representative task suite grounded in regulatory
semantics; (ii) model selection reflecting both open-source and commercially deployed LLMs; (iii)
embedding integration strategies; and (iv) well-defined metrics capturing both correctness and hal-
lucination propensity.

6.1 Task suite and ground truth generation

We operationalise five core topology types (containment, overlap, partial coverage ratio, adjacency,
and proximity) as supervised tasks. These were selected not only for their geospatial formalism but
because each is directly linked to documented ESG compliance failures in financial contexts:

* Containment: Whether an asset lies entirely within a policy zone. Errors here can breach
strict liability provisions under the EU Habitats Directive (92/43/EEC) and Natura 2000
regulations. In 2020, investigative reporting [32] linked Deutsche Bank financing to cattle
operations inside Brazilian deforestation moratoria zones, with reputational losses esti-
mated at ~ $120 million over 18 months.

* Overlap: Whether an asset shares any area with a policy zone. The Bank for Interna-
tional Settlements [29] documented cases where thermal power plants partially overlapping
high water-stress polygons from WRI Aqueduct were misclassified as compliant, leading to
breaches of loan covenants. In Southeast Asia, one such case triggered forced refinancing,
costing $35 million to the borrower and $6 million in lender write-downs.

 Partial Coverage Ratio: Proportion of asset area overlapping with a zone. The TNFD
LEAP framework [37/]] mandates proportional impact assessment. Inaccurate coverage es-
timation in Indonesian mining projects led to underreporting biodiversity impact, resulting
in a court-ordered production halt costing $14 million in lost revenue.

* Adjacency (Touch): Whether an asset boundary directly contacts a zone. IFC Blue Fi-
nance guidance [33] treats adjacency to sensitive marine areas as a compliance risk. In
2019, a coastal development in the Philippines was halted after buffer miscalculation placed
it adjacent to a marine protected area, with litigation and remediation exceeding $8 million
and financing withdrawn by two banks.

e Proximity: Minimum distance between asset and zone. Greenpeace [31] reported palm
oil plantations in Indonesia within 500 m of peatland reserves being classified as com-
pliant. Subsequent revelations led to exclusion from sustainability-linked financing, with



implicated firms losing 6—12% of equity value—hundreds of millions in market capitalisa-
tion.

Assets are sampled from three geometry classes: points (industrial facilities), lines (oil and gas
pipelines), and polygons (open-pit mines). Policy zones come from Natura 2000, WDPA protected
areas, and WRI Aqueduct 3.0 datasets, covering both legally binding and voluntary compliance
triggers.

Ground truth labels are derived deterministically from vector geometry operations using shapely
and geopandas under an equal-area projection (EPSG:6933):

* For binary tasks (¢, 0,t), y € {0, 1} is exact given the topological definition.

¢ For continuous tasks (r,d), y € [0,1] for coverage ratios and y € R™ for proximity,

computed with sub-meter precision.

Datasets were generated by combining anonymised facility coordinates from public registers with
policy zone geometries, ensuring balanced label distributions and geographic diversity.

6.2 Model selection rationale

Three categories of models are compared:

LLM-only. We include GPT-4 Turbo (OpenAl), Claude 3 Opus (Anthropic), and LLaMA-3-70B
(Meta, open weights) as representative of:

* Industry-standard commercial models already deployed in financial institutions for ESG
reporting and compliance document parsing [36} 34].
 High-parameter open-source models suitable for data governance constrained contexts.
LLMs cannot natively process vector geometries; we present them with textual descriptions of asset

and zone coordinates, extents, and distances, prompting compliance decisions (e.g., ‘Is asset A
within zone B?’).

Embedding-only. We train geometry encoders by learning a topology-aware representation space,
hence each topology type has either a dedicated head for binary/continuous prediction or a single-
task variant optimised solely for one topology type.

Hybrid (LLM+Embeddings). Embeddings are precomputed for (A, Z) pairs and passed to the
LLM as structured context:

1. Textual injection: Numerical features (coverage ratio, distance) verbalised and appended to
the prompt.

2. Tool-augmented inference: LLM queries an embedding service for compliance-relevant
topology vector (¢, 0,7, t,d).

This reflects real-world architectures in which LLMs orchestrate workflows but structured risk sig-
nals come from analytical engines.

6.3 Metrics and protocol
We report:

* Accuracy / Fl1-score for binary predicates (containment, overlap, adjacency).
» R? / MAE for continuous coverage and proximity.

* Hallucination rate: proportion of confident but incorrect answers, operationalised via a
confidence threshold 7.

* Relative hallucination reduction: (HRy1,m — HRuybria)/HRiLm.



The confidence scores for LLM are generated using the self-assessment scaling (0- 100%), and for
embeddings using softmax probabilities or regression uncertainty estimates.

Each configuration (LLM-only, embedding-only, hybrid) is evaluated on identical asset—policy pairs
under a held-out geography split. Binary tasks use accuracy/F1; continuous tasks use R* and MAE;
hallucination reduction applies the confident error criterion. To prevent leakage, LLM prompts are
generated from unseen raw geometries during prompt-template design, and embeddings are trained
solely on the training split. Significance testing uses paired bootstrap resampling (n = 10,000) with
p < 0.05.

This integrated design ensures that the evaluation not only tests model performance in a technical
sense but directly measures the financial and regulatory risk mitigation potential of topology-aware
embeddings in ESG finance.

7 Results and discussion

Table 2: Performance by topology type

Topology LLM-only Acc/F1 Embeddings Acc/F1  Hybrid Acc/F1
Containment 0.42/0.40 0.97/0.97 0.98/0.98
Overlap 0.55/0.53 0.94/0.94 0.96/0.96
Coverage Ratio (R?) 0.28 0.92 0.94
Adjacency 0.49/0.47 0.93/0.93 0.95/0.95
Proximity (MAE, km) 24.7 1.2 1.0

Hallucination reduction by topology. To make the improvement explicit, Table [3] reports hal-
lucination rates per spatial interaction type. We define a hallucination as a confident answer that
contradicts ground truth: for classification tasks (containment, overlap, adjacency) this is a con-
fident but wrong yes/no; for coverage ratio we threshold absolute error > 20 percentage points
declared with high confidence; for proximity we threshold absolute distance error > 5 km with high
confidence. The hybrid system (LLM + embeddings) substantially reduces hallucinations across all
interaction types.

Table 3: Hallucination rates by topology type (confident incorrect answers). Hybrid = LLM condi-
tioned on topology-aware policy embeddings. Synthetic but realistic benchmark; n=1,000 assets.

Topology Type LLM-only (%) Hybrid (%) Reduction

Abs. (%) Rel. (%)
Containment 52 14 38 73
Overlap 41 13 28 68
Coverage Ratiof 36 12 24 67
Adjacency (Touch) 37 12 25 68
Proximity* 33 11 22 67

T Coverage hallucination defined as confident absolute error > 20 pp in overlap fraction.

* Proximity hallucination defined as confident absolute error > 5km in nearest-distance.

All confidence thresholds follow the model’s native logit/score calibration; details in Appendix (available
upon request).

8 Conclusion and future work

Topology-aware policy embeddings offer a robust method for grounding LLMs in geospatial reality,
reducing hallucinations and improving compliance accuracy in spatially-aware financial applica-
tions. Future work will integrate temporal dynamics and multi-jurisdictional policy layers into a
foundation model for geo-financial compliance.
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